万能代换公式 u=tanx2sinx=2u1+u2cosx=1−u21+u2u = \tan \frac{x}{2} \\ \sin x = \frac{2u}{1 + u^2} \\ \cos x = \frac{1 - u^2}{1 + u^2} u=tan2xsinx=1+u22ucosx=1+u21−u2 积化和差公式 sinxcosy=12[sin(x+y)+sin(x−y)]cosxsiny=12[sin(x+y)−sin(x−y)]cosxcosy=12[cos(x+y)+cos(x−y)]sinxsiny=12[cos(x−y)−cos(x+y)]\sin x \cos y = \frac{1}{2} \left[ \sin (x+y) + \sin (x-y) \right] \\ \cos x \sin y = \frac{1}{2} \left[ \sin (x+y) - \sin (x-y) \right] \\ \cos x \cos y = \frac{1}{2} \left[ \cos (x+y) + \cos (x-y) \right] \\ \sin x \sin y = \frac{1}{2} \left[ \cos (x-y) - \cos (x+y) \right] sinxcosy=21[sin(x+y)+sin(x−y)]cosxsiny=21[sin(x+y)−sin(x−y)]cosxcosy=21[cos(x+y)+cos(x−y)]sinxsiny=21[cos(x−y)−cos(x+y)] 数学 基础